![]() 低熱膨脹係數聚酯薄膜與其形成方法
专利摘要:
本發明提供之低熱膨脹係數聚薄膜的形成方法,包括:提供95至55重量%之結晶性聚酯與5至45重量%之非結晶性聚酯混合;熔融押出結晶性聚酯與該非結晶性聚酯之混摻物,形成薄板;雙軸延伸薄板,形成薄膜;以及熱定型處理薄膜。 公开号:TW201323213A 申请号:TW100145894 申请日:2011-12-13 公开日:2013-06-16 发明作者:Li-Cheng Jheng;Jr-Jeng Ruan;Ming-Tsong Leu;Kuo-Chen Shih;Jyh-Horng Wu;Cheng-Hsing Fan 申请人:Ind Tech Res Inst; IPC主号:C08L67-00
专利说明:
低熱膨脹係數聚酯薄膜與其形成方法 本發明係關於聚酯薄膜,更特別關於其組成與形成方法。 一般顯示器與各類電子元件多使用透明玻璃基板作為基材材料,但隨著電子產品普及化與對於電子產品的依賴提升,顯示器與各類電子元件朝向輕量化與薄型化已是主流趨勢。進一步要求攜帶方便、可撓曲、可穿戴、可耐衝擊等優越性能的軟性顯示器與軟性電子元件。含薄膜電晶體(TFT)之軟性顯示器(或軟性電子元件)的製造技術,有批次式(batch type)與Roll-to-Roll兩種方式進行TFT製作。若採用批次方式進行TFT製作,可利用目前廠商舊有設備來製造,相當具有成本上的優勢,不過採用批次式必須應用所謂轉移(transfer)或離型(release)技術。離型技術即軟板/玻璃載板離型製程技術,是將軟性基板固定於硬質玻璃載板上來進行TFT製作,製作完成之後再將軟性顯示器(或軟性電子元件)由硬質玻璃載板下剝離下來,詳細技術內容可參照TW201106447。若選用的軟性基板是塑膠基板,則須特別考量耐熱性、尺寸安定性、與熱膨脹係數。依據相關技術如US20090298211,為使塑膠基板在製作過程中不致因熱膨脹係數與硬質玻璃載板不匹配而導致形變或翹曲,塑膠基板須與硬質玻璃載板之熱膨脹係數接近。一般玻璃熱膨脹係數約4 ppm/℃,若塑膠基板材料之熱膨脹係數可降低,更接近玻璃的熱膨脹係數,將有利於降低塑膠基板與玻璃間熱膨脹係數差異產生的介面應力問題。 本發明提供新的組成及對應的製程方法,形成低熱膨脹係數與高透光度之塑膠薄膜。 本發明一實施例提供一種低熱膨脹係數聚酯薄膜,係由95至55重量%之結晶性聚酯與5至45重量%之非結晶性聚酯混掺而成。 本發明一實施例提供一種低熱膨脹係數聚酯薄膜的形成方法,包括:提供95至55重量%之結晶性聚酯與5至45重量%之非結晶性聚酯混合;熔融押出結晶性聚酯與該非結晶性聚酯之混掺物,形成薄板;雙軸延伸薄板,形成薄膜;以及熱定型處理薄膜。 本發明提供之低熱膨脹係數聚酯薄膜,係由95至55重量%之結晶性聚酯,與5至45重量%之非結晶性聚酯組成。上述結晶性聚酯與非結晶係聚酯彼此混掺。若結晶性聚酯之比例過高,則影響薄膜雙軸延伸加工性,無法實施高雙軸延伸倍率處理。若結晶性聚酯之比例過低,則薄膜玻璃轉換溫度過低,無法提供足夠的熱安定性。在這必需注意的是,本發明之聚酯薄膜只含結晶性聚酯與非結晶性聚酯,而不另外添加其他無機粒子或有機粒子,以節省成本並簡化製程。 在本發明一實施例中,結晶性聚酯(在DSC熱差分析可以觀察到結晶熔融峰)為2,6-萘二甲酸二甲酯、乙二醇、與三環癸二甲醇縮合共聚形成的聚萘二羧酸乙二酯(PEN),其重均分子量約介於10000至50000之間。若PEN之重均分子量過高,則可能融熔黏度過高,不利融熔押出加工製程,並且可能無法與聚對苯二甲酸乙二醇酯(PETG)混摻形成完全相容相。若PEN之重均分子量過低,則可能無法得到良好機械強度。 在本發明一實施例中,非結晶性聚酯(在DSC熱差分析無法觀察到結晶熔融峰)係對苯二甲酸、乙二醇、與環己烷二甲醇縮合共聚形成的環己烷二甲醇改質之聚對苯二甲酸乙二醇酯(PETG),其重均分子量約介於10000至50000之間。若PETG之重均分子量過高,則可能融熔黏度過高,不利融熔押出加工製程,並且可能無法與PEN混摻形成完全相容相。若PETG之重均分子量過低,則可能無法得到良好機械強度。環己烷二甲醇包括1,3-環己烷二甲醇、1,4-環己烷二甲醇、或上述之組合。PETG中的對苯二甲酸佔雙酸含量100莫耳%(即不含其他雙酸),而環己烷二甲醇佔雙醇含量約40莫耳%至20莫耳%,乙二醇佔雙醇含量約50莫耳%至80莫耳%,且環己烷二甲醇與乙二醇相加占雙醇含量之100莫耳%。若環己烷二甲醇佔雙醇的比例過低,則PETG無法形成非結晶相。若環己烷二甲醇佔雙醇的比例過高,則PETG可能無法形成非結晶相。 將結晶性聚酯如PEN與非結晶性聚酯如PETG除溼乾燥後均勻混合。在後續的高溫製程中,若聚酯的水氣含量太高會造成高分子降解,這會對於產品物性有不良影響。若採用循環氣流來除濕乾燥,乾燥溫度介於90℃至120℃之間,且乾燥時間約為36小時以上。若以真空乾燥,乾燥溫度約為60℃至90℃之間,且乾燥時間約介於4至8小時之間,或者時間更長更佳。完成除濕乾燥後,依不同混摻組成比例預先將兩種聚酯塑膠粒均勻混合。若乾燥溫度過低及/或乾燥時間過短,則無法有效去除聚酯中的水氣含量。 接著熔融押出該結晶性聚酯與該非結晶性聚酯之混摻物,形成一薄板。熔融加工可採用雙螺桿押出機或塑譜儀,其製程溫度約介於260℃至330℃之間。若熔融加工的製程溫度過高,則融熔黏度可能過低,不利後續T型模頭押出薄板,並且在加工過程時融熔態混摻物可能會因高溫而發生裂解。若熔融加工的製程溫度過低,則融熔黏度可能過高,使得轉矩值過高,無法順利進行熔融混摻加工。上述之雙螺桿押出機之轉速約介於200rpm至800rpm之間。若轉速過高,則可能使得雙螺桿壓出機轉矩值過高,無法順利進行熔融混摻加工。若轉速過低,則可能無法有效將該結晶性聚酯與該非結晶性聚酯均勻混摻。熔融後的混摻聚酯透過T型模頭押出,接著再經由鑄模輪(casting drum)將薄板成形,以得到均勻厚度的薄板。鑄膜溫度通常低於玻璃轉移溫度(Tg)以確保高分子在熔融時快速冷卻。 接著雙軸延伸薄板,形成薄膜。雙軸延伸加工係在薄膜材料之玻璃轉換溫度以上進行預熱持溫後,再同時或依序在平行薄膜平面的兩個垂直方向以特定速率進行延伸,以提升薄膜的熱性質、機械性質、平整度、與尺寸安定性。在本發明一實施例中,雙軸延伸程序可以是在循環熱風烘箱內進行同步延伸或逐步延伸。在本發明另一實施例中,雙軸延伸程序係連續式兩階段延伸,比如先以加熱滾輪的方式縱向延伸,以增進機械方向(MD direction)的抗拉性質,再進熱烘箱內進行橫向延伸(TD direction),即試片先經均勻循環熱風加熱後進行橫向延伸。上述之雙軸延伸程序可採用Bruckner KARO IV批次式雙軸延伸機進行同步延伸。在延伸過程中分子定向(orientation)排列,形成非等向性(anisotropic)薄膜。此外,可採用熱風循環馬達,適當轉速提供適當風速,可將其轉速調整約介於1400rpm至1800rpm之間。在本發明一實施例中,雙軸延伸之速度約介於1%/sec至40%/sec之間。若雙軸延伸之速度過高,則延伸所造成的應力過大,薄膜容易在加工過程中破裂。若雙軸延伸之速度過低,則可能無法利用雙軸延伸加工有效提升薄膜性質。在本發明一實施例中,雙軸延伸之延伸溫度約介於120℃至160℃之間。若雙軸延伸之溫度過高,則可能因過高溫度而過度軟化,無法延伸出均勻的薄膜,甚至在薄膜中心區域形成凹陷。若雙軸延伸之溫度過低,則無法軟化材料進行延伸,薄膜可能會在加工過程中破裂。雙軸延伸之延伸倍率約在3.5×3.5倍以上或約介於3.5×3.5至9×9倍或約介於3.5×3.5至6×6倍。一般來說,延伸倍率越高,薄膜產品的熱膨脹係數越低。但若雙軸延伸之延伸倍率過高,可能會造成薄膜碎裂。 在雙軸延伸結束後,進一步熱定型處理薄膜。在經過雙軸延伸後的高分子鏈,因受外部應力及溫度作用被拉開、拉直且分子之間彼此移動產生較大的形變,此時若直接冷卻到Tg以下定型,分子內部將殘存內應力,造成材料尺寸上的不穩定,因此對於要求熱收縮率低的薄膜材料熱定型處理是必要的階段。不同材料熱定型處理的目的不同,對於結晶性高分子熱定型是加速高分子的二次結晶或結晶成長過程,將分子鏈定向為結晶方向,並消除薄膜的內應力,提高結晶度,使晶體結構完善增強機械性能,並減少薄膜在高溫的尺寸收縮量。在本發明一實施例中,熱定型處理之溫度約介於180℃至250℃之間,且時間約介於5秒至240秒之間。若熱定型處理之時間過長,則對熱定型效益提升不大。若熱定型處理之時間過短,則無法有效減少薄膜在高溫的尺寸收縮量,即無法提供薄膜足夠的尺寸安定性能。 經上述混掺、熔融押出、雙軸延伸、及熱定型之步驟後,即得聚酯薄膜,其熱膨脹係數約為1 ppm/℃~12.4 ppm/℃甚至約為4 ppm/℃~10 ppm/℃,且其光穿透率介於88%至100%之間。與習知技藝之聚酯薄膜相較,本發明之聚酯薄膜在維持高透光度的前提下,具有較低之熱膨脹係數,適用於軟性顯示器與軟性電子元件之軟性塑膠基板。軟性顯示器可為軟性液晶顯示器或軟性主動式顯示器,軟性電子元件可為軟性RFID、軟性太陽能電池、軟性發光二極體照明元件、軟性印刷電路板、或其他軟性電子元件。上述聚酯薄膜可特別應用於軟性主動式有機發光二極體顯示器或軟性RFID元件,比如在玻璃硬質載板上的聚酯薄膜製作薄膜電晶體(TFT)結構後,再移除玻璃硬質載板。上述薄膜電晶體之製程可為有機薄膜電晶體(OTFT)製程,或者溫度低於130℃之薄膜電晶體製程。 為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖式,作詳細說明如下: 【實施例】 在下述實施例中,PEN係購自Teijin商品型號TN-8065S,重量平均分子量約35000Da,PETG係購自SK Chemical商品型號SkyGreen K2010,重量平均分子量約37500Da。 實施例1 將PEN及PETG塑膠粒以篩網震篩,去除塑膠粒表面粉塵及細微碎片,PEN以100℃熱風循環烘箱乾燥,烘乾48小時,PETG以80℃抽真空烘乾8小時,以確保塑膠粒充分乾燥。分別秤取85重量份之PEN及15重量份之PETG均勻混合,接著以雙螺桿押出機(Coperion/W&P ZSK 26 TPE Compound型號)進行熔融混摻,熔融加工的製程溫度為255~310℃,螺桿轉速約為500rpm,經T型模頭熔融押出,得到均勻厚度的透明薄板,鑄模輪的溫度設定為70℃。將所得到的薄板裁切成117mm×117mm尺寸,並置於雙軸延伸設備(Bruckner KARO IV)中進行同步雙軸延伸程序,首先進行預熱處理,預熱處理條件為在140℃持溫60sec。接著進行同步雙軸延伸,延伸溫度設定140℃,熱風循環馬達轉速設定為1700rpm,延伸速度10%/sec,延伸倍率為5×5倍。在同步雙軸延伸後,於雙軸延伸設備內,接續進行熱定型熱處理,熱處理條件為在230℃下持溫60秒。 實施例2 將PEN及PETG塑膠粒以篩網震篩,去除塑膠粒表面粉塵及細微碎片,PEN以100℃熱風循環烘箱乾燥,烘乾48小時,PETG以80℃抽真空烘乾8小時,以確保塑膠粒充分乾燥。分別秤取75重量份之PEN及25重量份之PETG均勻混合,接著以雙螺桿押出機(Coperion/W&P ZSK 26 TPE Compound型號)進行熔融混摻,熔融加工的製程溫度為255~310℃,螺桿轉速約為500rpm,經T型模頭熔融押出,得到均勻厚度的透明薄板,鑄模輪的溫度設定為70℃。將所得到的薄板裁切成117mm×117mm尺寸,並置於雙軸延伸設備(Bruckner KARO IV)中進行同步雙軸延伸程序,首先進行預熱處理,預熱處理條件為在140℃持溫60sec。接著進行同步雙軸延伸,延伸溫度設定140℃,熱風循環馬達轉速設定為1700rpm,延伸速度10%/sec,延伸倍率為5.5×5.5倍。在同步雙軸延伸後,於雙軸延伸設備內,接續進行熱定型熱處理,熱處理條件為在230℃下持溫60秒。 實施例3 將PEN及PETG塑膠粒以篩網震篩,去除塑膠粒表面粉塵及細微碎片,PEN以100℃熱風循環烘箱乾燥,烘乾48小時,PETG以80℃抽真空烘乾8小時,以確保塑膠粒充分乾燥。分別秤取85重量份之PEN及15重量份之PETG均勻混合,接著以雙螺桿押出機(Coperion/W&P ZSK 26 TPE Compound型號)進行熔融混摻,熔融加工的製程溫度為255~310℃,螺桿轉速約為500rpm,經T型模頭熔融押出,得到均勻厚度的透明薄板,鑄模輪的溫度設定為70℃。將所得到的薄板裁切成117mm×117mm尺寸,並置於雙軸延伸設備(Bruckner KARO IV)中進行同步雙軸延伸程序,首先進行預熱處理,預熱處理條件為在140℃持溫60sec。接著進行同步雙軸延伸,延伸溫度設定140℃,熱風循環馬達轉速設定為1700rpm,延伸速度10%/sec,延伸倍率為4.5×4.5倍。在同步雙軸延伸後,於雙軸延伸設備內,接續進行熱定型熱處理,熱處理條件為在230℃下持溫60秒。 實施例4 將PEN及PETG塑膠粒以篩網震篩,去除塑膠粒表面粉塵及細微碎片,PEN以100℃熱風循環烘箱乾燥,烘乾48小時,PETG以80℃抽真空烘乾8小時,以確保塑膠粒充分乾燥。分別秤取85重量份之PEN及15重量份之PETG均勻混合,接著以雙螺桿押出機(Coperion/W&P ZSK 26 TPE Compound型號)進行熔融混摻,熔融加工的製程溫度為255~310℃,螺桿轉速約為500rpm,經T型模頭熔融押出,得到均勻厚度的透明薄板,鑄模輪的溫度設定為70℃。將所得到的薄板裁切成117mm×117mm尺寸,並置於雙軸延伸設備(Bruckner KARO IV)中進行同步雙軸延伸程序,首先進行預熱處理,預熱處理條件為在140℃持溫60sec。接著進行同步雙軸延伸,延伸溫度設定140℃,熱風循環馬達轉速設定為1700rpm,延伸速度10%/sec,延伸倍率為4×4倍。在同步雙軸延伸後,於雙軸延伸設備內,接續進行熱定型熱處理,熱處理條件為在230℃下持溫60秒。 實施例5 將PEN及PETG塑膠粒以篩網震篩,去除塑膠粒表面粉塵及細微碎片,PEN以100℃熱風循環烘箱乾燥,烘乾48小時,PETG以80℃抽真空烘乾8小時,以確保塑膠粒充分乾燥。分別秤取85重量份之PEN及15重量份之PETG均勻混合,接著以雙螺桿押出機(Coperion/W&P ZSK 26 TPE Compound型號)進行熔融混摻,熔融加工的製程溫度為255~310℃,螺桿轉速約為500rpm,經T型模頭熔融押出,得到均勻厚度的透明薄板,鑄模輪的溫度設定為70℃。將所得到的薄板裁切成117mm×117mm尺寸,並置於雙軸延伸設備(Bruckner KARO IV)中進行同步雙軸延伸程序,首先進行預熱處理,預熱處理條件為在140℃持溫60sec。接著進行同步雙軸延伸,延伸溫度設定140℃,熱風循環馬達轉速設定為1700rpm,延伸速度10%/sec,延伸倍率為3.5×3.5倍。在同步雙軸延伸後,於雙軸延伸設備內,接續進行熱定型熱處理,熱處理條件為在230℃下持溫60秒。 比較例1 將PEN塑膠粒以篩網震篩,去除塑膠粒表面粉塵及細微碎片,PEN以100℃熱風循環烘箱乾燥,烘乾48小時,以確保塑膠粒充分乾燥。利用雙螺桿押出機(Coperion/W&P ZSK 26 TPE Compound型號)將PEN進行薄板押出,熔融加工的製程溫度為255~310℃,螺桿轉速約為500rpm,經T型模頭熔融押出,得到均勻厚度的透明薄板,鑄模輪的溫度設定為70℃。將所得到的薄板裁切成117mm×117mm尺寸,並置於雙軸延伸設備(Bruckner KARO IV)中進行同步雙軸延伸程序,首先進行預熱處理,預熱處理條件為在140℃持溫60sec。接著進行同步雙軸延伸,延伸溫度設定140℃,熱風循環馬達轉速設定為1700rpm,延伸速度10%/sec,延伸倍率為3×3倍。在同步雙軸延伸後,於雙軸延伸設備內,接續進行熱定型熱處理,熱處理條件為在230℃下持溫60秒。 比較例2 將PEN及PETG塑膠粒以篩網震篩,去除塑膠粒表面粉塵及細微碎片,PEN以100℃熱風循環烘箱乾燥,烘乾48小時,PETG以80℃抽真空烘乾8小時,以確保塑膠粒充分乾燥。分別秤取50重量份之PEN及50重量份之PETG均勻混合,接著以雙螺桿押出機(Coperion/W&P ZSK 26 TPE Compound型號)進行熔融混摻,熔融加工的製程溫度為255~310℃,螺桿轉速約為500rpm,經T型模頭熔融押出,得到均勻厚度的透明薄板,鑄模輪的溫度設定為70℃。將所得到的薄板裁切成117mm×117mm尺寸,並置於雙軸延伸設備(Bruckner KARO IV)中進行同步雙軸延伸程序,首先進行預熱處理,預熱處理條件為在140℃持溫60sec。接著進行同步雙軸延伸,延伸溫度設定140℃,熱風循環馬達轉速設定為1700rpm,延伸速度10%/sec,延伸倍率為5.5×5.5倍。在同步雙軸延伸後,於雙軸延伸設備內,接續進行熱定型熱處理,熱處理條件為在230℃下持溫60秒。 比較例3 將PEN及PETG塑膠粒以篩網震篩,去除塑膠粒表面粉塵及細微碎片,PEN以100℃熱風循環烘箱乾燥,烘乾48小時,PETG以80℃抽真空烘乾8小時,以確保塑膠粒充分乾燥。分別秤取85重量份之PEN及15重量份之PETG均勻混合,接著以雙螺桿押出機(Coperion/W&P ZSK 26 TPE Compound型號)進行熔融混摻,熔融加工的製程溫度為255~310℃,螺桿轉速約為500rpm,經T型模頭熔融押出,得到均勻厚度的透明薄板,鑄模輪的溫度設定為70℃。將所得到的薄板裁切成117mm×117mm尺寸,並置於雙軸延伸設備(Bruckner KARO IV)中進行同步雙軸延伸程序,首先進行預熱處理,預熱處理條件為在140℃持溫60sec。接著進行同步雙軸延伸,延伸溫度設定140℃,熱風循環馬達轉速設定為1700rpm,延伸速度10%/sec,延伸倍率為3×3倍。在同步雙軸延伸後,於雙軸延伸設備內,接續進行熱定型熱處理,熱處理條件為在230℃下持溫60秒。 上述實施例與比較例之製程參數整理如表1所示,其薄膜產品之物理性質整理如表2所示。在熱膨脹係數與尺寸收縮方面,透過TMA分析(Thermomechanical analysis,熱機械分析,TA Q400)進行熱膨脹係數量測與尺寸收縮率量測,熱膨脹係數量測範圍30~90℃之間,尺寸收縮率則分別在130℃持溫30分鐘與150℃持溫30分鐘條件下量測。實施例之熱膨脹係數皆在12.4 ppm/℃以下。其中實施例1-3,皆為混摻特定比例組成的PETG,經特定高倍率雙軸延伸加工並經特定熱定型熱處理,具有極低的熱膨脹係數,相當接近玻璃之熱膨脹係數,並同時具有足夠的尺寸安定性。由表1及2可知。PEN/PETG的重量比例範圍介於85/15至75/25之間,且雙軸延伸倍數介於3.5×3.5至5.5×5.5之間,可得所需性質之聚酯薄膜。 在耐熱性方面,透過DMA分析(Dynamic mechanical analysis,動態機械分析,TA Q800)進行雙軸延伸薄膜玻璃轉換溫度量測,實施例之玻璃轉換溫度皆接近或超過130°C,對於低溫TFT製程來說,具有可接受的耐熱性。 在透明性方面,透過霧度計(Hazemeter)來量測雙軸延伸薄膜之全光線光穿透率,光穿透率約高代表越好的透明性。比較例1材料組成沒有混摻PETG,其雙軸延伸薄膜之光穿透率小於88%。各實施例之雙軸延伸薄膜的光穿透率皆大於88%,具有較佳的透明性。 所揭露之實施例經上述混掺、熔融押出、雙軸延伸、及熱定型之步驟後,即得聚酯薄膜,其熱膨脹係數小於12.4 ppm/℃或大於或等於1 ppm/℃,且其光穿透率介於88%至100%之間。與習知技藝之聚酯薄膜相較,本發明之聚酯薄膜在維持高透光度的前提下,具有較低之熱膨脹係數,適用於軟性顯示器與軟性電子元件之軟性塑膠基板。軟性顯示器可為軟性液晶顯示器或軟性主動式顯示器,軟性電子元件可為軟性RFID、軟性太陽能電池、軟性發光二極體照明元件、軟性印刷電路板、或其他軟性電子元件。上述聚酯薄膜可特別應用於軟性主動式有機發光二極體顯示器或軟性RFID元件,比如在玻璃硬質載板上的聚酯薄膜製作薄膜電晶體(TFT)結構後,再移除玻璃硬質載板。上述薄膜電晶體之製程可為有機薄膜電晶體(OTFT)製程,或者溫度低於130℃之薄膜電晶體製程。 雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
权利要求:
Claims (10) [1] 一種低熱膨脹係數聚酯薄膜,係由95至55重量%之結晶性聚酯;以及5至45重量%之非結晶性聚酯組成,其中該結晶性聚酯與該非結晶係聚酯彼此混掺。 [2] 如申請專利範圍第1項所述之低熱膨脹係數聚酯薄膜,其中該結晶性聚酯係2,6-萘二甲酸二甲酯、乙二醇、與三環癸二甲醇縮合共聚形成的聚萘二羧酸乙二酯(PEN)。 [3] 如申請專利範圍第1項所述之低熱膨脹係數聚酯薄膜,其中該非結晶性聚酯係對苯二甲酸、乙二醇、與環己烷二甲醇縮合共聚形成的環己烷二甲醇改質之聚對苯二甲酸乙二醇酯(PETG),其中乙二醇與環己烷二甲醇之莫耳比介於50:50至80:20之間,且環己烷二甲醇包括1,3-環己烷二甲醇、1,4-環己烷二甲醇、或上述之組合。 [4] 如申請專利範圍第1項所述之低熱膨脹係數聚酯薄膜,其熱膨脹係數為1 ppm/℃~12.4 ppm/℃。 [5] 一種低熱膨脹係數聚酯薄膜的形成方法,包括:提供95至55重量%之結晶性聚酯與5至45重量%之非結晶性聚酯,除溼乾燥後均勻混合;熔融押出該結晶性聚酯與該非結晶性聚酯之混掺物,形成一薄板;雙軸延伸該薄板,形成一薄膜;以及熱定型處理該薄膜。 [6] 如申請專利範圍第5項所述之低熱膨脹係數聚酯薄膜的形成方法,其中該結晶性聚酯係2,6-萘二甲酸二甲酯、乙二醇、與三環癸二甲醇縮合共聚形成的聚萘二羧酸乙二酯(PEN)。 [7] 如申請專利範圍第5項所述之低熱膨脹係數聚酯薄膜的形成方法,其中該非結晶性聚酯係對苯二甲酸、乙二醇、與環己烷二甲醇縮合共聚形成的環己烷二甲醇改質之聚對苯二甲酸乙二醇酯(PETG),其中乙二醇與環己烷二甲醇之莫耳比介於50:50至80:20之間,且環己烷二甲醇包括1,3-環己烷二甲醇、1,4-環己烷二甲醇、或上述之組合。 [8] 如申請專利範圍第5項所述之低熱膨脹係數聚酯薄膜的形成方法,其中熔融押出該結晶性聚酯與該非結晶性聚酯之混掺物,形成該薄板之步驟採用一雙螺桿押出機或一塑譜儀,其製程溫度介於260℃至330℃之間,且轉速介於200rpm至800rpm之間。 [9] 如申請專利範圍第5項所述之低熱膨脹係數聚酯薄膜的形成方法,其中雙軸延伸該薄板,形成該薄膜之步驟採用一熱風循環馬達,其轉速介於1400rpm至1800rpm之間,延伸速度介於1%/sec至40%/sec之間,延伸倍率在3.5×3.5倍以上,且製程溫度介於120℃至160℃之間。 [10] 如申請專利範圍第5項所述之低熱膨脹係數聚酯薄膜的形成方法,其中熱定型處理該薄膜之溫度介於180℃至250℃之間,且時間介於5秒至240秒之間。
类似技术:
公开号 | 公开日 | 专利标题 TWI469872B|2015-01-21|低熱膨脹係數聚酯薄膜與其形成方法 JP4232004B2|2009-03-04|二軸配向ポリエステルフィルム TWI432480B|2014-04-01|聚酯薄膜組成物及其製造方法 JP2012159548A|2012-08-23|偏光板用離型ポリエステルフィルム JP2012025088A|2012-02-09|基材レス両面粘着シート用ポリエステルフィルム JP2014156573A|2014-08-28|ポリアミド系樹脂組成物、及びそれからなるフィルム JP2010070630A|2010-04-02|二軸配向ポリアリーレンスルフィドフィルムおよびそれを用いてなる接着材料 TWI495680B|2015-08-11|聚酯組成物、電子裝置、與薄膜的形成方法 KR20110035455A|2011-04-06|백색필름 및 이의 제조방법 TW201623352A|2016-07-01|嵌段共聚物氫化物以及由其所構成之延伸薄膜 TWI423999B|2014-01-21|非晶系共聚酯、軟性基材、及光學膜 TWI535780B|2016-06-01|聚酯混掺物 JP2020516723A|2020-06-11|ポリマー可塑剤で可塑化したコポリエステル JP5640421B2|2014-12-17|太陽電池バックシート用ポリエステルフィルム US20170190903A1|2017-07-06|Polymer compositions and substrates for high temperature transparent conductive film applications EP2787027A1|2014-10-08|Polyester film, solar cell backsheet, and solar cell TWI720461B|2021-03-01|熱收縮聚酯膜及其製法 KR20180048479A|2018-05-10|일축연신에 의한 강도 변경 폴리에스테르 필름의 제조방법 WO2018047776A1|2018-03-15|保護テープおよびその製造方法 KR101797342B1|2017-12-12|성형용 폴리에스테르 필름 및 그 제조방법 TW201938634A|2019-10-01|雙軸延伸膜 WO2013121833A1|2013-08-22|二軸配向積層フィルム JP2009040960A|2009-02-26|ポリエステルの熱処理方法 JP2012232494A|2012-11-29|離型ポリエステルフィルム KR20140085219A|2014-07-07|대전방지 폴리에스테르 필름
同族专利:
公开号 | 公开日 CN103160081A|2013-06-19| TWI469872B|2015-01-21| US8772419B2|2014-07-08| US20130150532A1|2013-06-13|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JPH0722965B2|1986-07-18|1995-03-15|ダイアホイルヘキスト株式会社|ポリエステル系収縮包装フイルム| AU3865589A|1988-06-20|1990-01-12|Foster-Miller Inc.|Molecularly oriented tubular components having a controlled coefficient of thermal expansion| JPH03137814A|1989-10-24|1991-06-12|Diafoil Co Ltd|Biaxially oriented polyester film for floppy disk| US5628957A|1992-07-07|1997-05-13|Continental Pet Technologies, Inc.|Method of forming multilayer container with polyethylene naphthalalte | TW304176B|1993-12-15|1997-05-01|Continental Pet Technologies|| US5859116A|1997-01-21|1999-01-12|Eastman Chemical Company|Clarity and adjustable shrinkage of shrink films using miscible polyester blends| KR100463695B1|1997-12-11|2004-12-29|데이진 가부시키가이샤|자기기록매체용 이축배향 폴리에스테르 필름| US6426128B1|1998-01-06|2002-07-30|Hna Holdings, Inc.|Co-processable multi-layer laminates for forming high strength, haze-free, transparent articles and methods of producing same| JP4530486B2|1999-06-09|2010-08-25|三井化学株式会社|ポリエステル樹脂組成物、その製造方法およびその用途| US6773735B1|2000-11-28|2004-08-10|Associated Packaging Enterprises, Inc.|Multi-layered thermoplastic container| US6599994B2|2001-07-18|2003-07-29|Eastman Chemical Company|Polyester blends and heat shrinkable films made therefrom| WO2003022575A1|2001-09-11|2003-03-20|Dupont Teijin Films U.S. Limited Partnership|Heat-stabilised poly film for flexible electronic and opto-electronic devices| GB0208506D0|2002-04-12|2002-05-22|Dupont Teijin Films Us Ltd|Film coating| US7147927B2|2002-06-26|2006-12-12|Eastman Chemical Company|Biaxially oriented polyester film and laminates thereof with copper| US20060283770A1|2005-06-03|2006-12-21|Applied Materials, Inc.|Transportation fixture and package for substrate rack| CN100523060C|2005-07-26|2009-08-05|中国乐凯胶片集团公司|一种具有热封层的聚合物薄膜及其制备方法| DE102006029397A1|2006-06-27|2008-01-03|Ovd Kinegram Ag|Verfahren zur Herstellung eines laminierten Schichtverbunds, laminierter Schichtverbund und dessen Verwendung| US20110209901A1|2007-08-02|2011-09-01|Dupont Teijin Films U.S. Limited Partnership|Coated polyester film| GB0807037D0|2008-04-17|2008-05-21|Dupont Teijin Films Us Ltd|Coated polymeric films| US20090298211A1|2008-05-28|2009-12-03|Tae-Woong Kim|Method for manufacturing flexible display| KR101097431B1|2009-04-28|2011-12-23|제일모직주식회사|디스플레이 패널용 플렉서블 기판 및 그 제조 방법| TWI377646B|2009-08-03|2012-11-21||Substrate structures applied in flexible electrical devices and fabrication method thereof| JP4701311B2|2009-09-17|2011-06-15|キヤノン株式会社|電子写真用ベルト及び電子写真装置|JP5849967B2|2010-12-10|2016-02-03|三菱瓦斯化学株式会社|ポリエステル樹脂及び光学レンズ| TWI455956B|2012-11-21|2014-10-11|Ind Tech Res Inst|非晶系共聚酯、基材、及光學膜| TWI495680B|2013-11-07|2015-08-11|Ind Tech Res Inst|聚酯組成物、電子裝置、與薄膜的形成方法| US9353259B2|2013-11-18|2016-05-31|Konica Minolta, Inc.|Method for producing thermoplastic resin composition| JP6582858B2|2015-10-16|2019-10-02|東洋紡株式会社|二軸延伸ポリエチレンテレフタレート系フィルム及びその製造方法| US10767041B2|2015-11-24|2020-09-08|Eastman Chemical Company|Polymer compositions and substrates for high temperature transparent conductive film applications|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 TW100145894A|TWI469872B|2011-12-13|2011-12-13|低熱膨脹係數聚酯薄膜與其形成方法|TW100145894A| TWI469872B|2011-12-13|2011-12-13|低熱膨脹係數聚酯薄膜與其形成方法| CN2011104555689A| CN103160081A|2011-12-13|2011-12-27|低热膨胀系数聚酯薄膜与其形成方法| US13/494,660| US8772419B2|2011-12-13|2012-06-12|Polyester films with low thermal expansion and methods for manufacturing the same| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|